On the role of hypercubes in the resonance graphs of benzenoid graphs

نویسندگان

  • Khaled Salem
  • Sandi Klavzar
  • Ivan Gutman
چکیده

The resonance graph R(B) of a benzenoid graph B has the perfect matchings of B as vertices, two perfect matchings being adjacent if their symmetric difference forms the edge set of a hexagon of B . A family P of pair-wise disjoint hexagons of a benzenoid graph B is resonant in B if B−P contains at least one perfect matching, or if B − P is empty. It is proven that there exists a surjective map f from the set of hypercubes of R(B) onto the resonant sets of B such that a k-dimensional hypercube is mapped into a resonant set of cardinality k .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on vertex-edge Wiener polynomials and indices of graphs

The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...

متن کامل

Applications of isometric embeddings to chemical graphs

Abstract. Applications of isometric embeddings of benzenoid graphs are surveyed. Their embeddings into hypercubes provide methods for computing the Wiener index and the Szeged index, while embeddings into the Cartesian product of trees lead to fast algorithms. A new method for computing the hyperWiener index of partial cubes in general, and of benzenoid graphs and trees in particular, is also p...

متن کامل

On discriminativity of Zagreb indices

Zagreb indices belong to better known and better researched topological indices. We investigate here their ability to discriminate among benzenoid graphs and arrive at some quite unexpected conclusions. Along the way we establish tight (and sometimes sharp) lower and upper bounds on various classes of benzenoids.

متن کامل

Fibonacci dimension of the resonance graphs of catacondensed benzenoid graphs

The Fibonacci dimension fdim(G) of a graph G was introduced in [1] as the smallest integer d such that G admits an isometric embedding into Γd, the d-dimensional Fibonacci cube. The Fibonacci dimension of the resonance graphs of catacondensed benzenoid systems is studied. This study is inspired by the fact, that the Fibonacci cubes are precisely the resonance graphs of a subclass of the catacon...

متن کامل

Computing distance moments on graphs with transitive Djoković-Winkler relation

The cut method proved to be utmost useful to obtain fast algorithms and closed formulas for classical distance based invariants of graphs isometrically embeddable into hypercubes. These graphs are known as partial cubes and in particular contain numerous chemically important graphs such as trees, benzenoid graphs, and phenylenes. It is proved that the cut method can be used to compute an arbitr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 306  شماره 

صفحات  -

تاریخ انتشار 2006